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In the design of powerful electromagnetic systems it is necessary to calculate the ther- 
momechanical processes that take place within such structures. Of particular interest are 
calculations of the fields that arise in the combined superconductors, so as to make possible 
an estimate of the undesirable consequences of a sudden transition to a normal state [i]. 

In the present study we examine processes in a single direct infinitely long combined 
wire conductor of circular cross section, representing a strand of an ideal conductor, coated 
with a thick layer of ordinary metal. It is assumed that the specific resistance of the 
strand undergoes a jumpwise change from zero to the level of the surrounding metal at the 
initial instant of time. In this case, the current which initially flows through this ideal 
conductor is expelled into the surrounding metal, heat is generated, and mechanical stresses 
are produced that can be attributed to the temperature difference and the ponderomotive forces. 

This calculation is made up of three stages: the vector field of the current density 
is initially determined, and this is followed by the determination of the temperature field 
generated by the Joule heat; the results of these two stages are then used to calculate the 
mechanical stresses. 

i. Current Density Diffusion. Using a system of Maxwell equations and the linear ma- 
terial relationships for an isotropic medium [2], we derive an equation for the current den- 

sity 

1 V • (V • i) + 0i ~~ ~ - O. (1.1) 
~o~ ~ + ~ -  ot ~ 

Here j ( r ,  t )  i s  t h e  c u r r e n t  d e n s i t y  v e c t o r  as  a f u n c t i o n  o f  t h e  r a d i u s  v e c t o r  and o f  t i m e ;  
and ~ denote the magnetic permeability and dielectric permittivity of the medium; D0 and 

go are the magnetic and electric constants; o is the specific conductivity. Since we can 
neglect the displacement currents as small in comparison with the conductivity current in 
the case of metal conductors [2], we obtain from (i.i) 5i = D0~a~j~/St (A is the Laplace 
operator). 

In the problem which we are considering here, dealing with an infinitely long conductor, 
the vector J is directed along the axis, and with consideration of the symmetry of the circu- 
lar cross Section we arrive at the following: 

a2j/Or 2 + (l/r)Oj/Or = ~ogOOj/at. (1.2) 

We will assume that in the initial state the current I 0 is uniformly distributed over 
the cross section of a strand of radius e. The initial condition for Eq. (1.2) will then 
have the form 

] ( r , O ) =  I.---~~ l ( e - - r ) ,  (i 3) 
~ e  2 

where I(...) is the function of the single jump. The boundary conditions for (1.2) are rep- 
resented by requirements of limits imposed on j(0, t), as well as the relationship 8j(a, t)/ 
8r = [~oDo/(2~a)](dIo/dt), which is a result of the integration of (1.2) over the cross sec- 
tion of the conductor, i.e., a circle of radius a. Assuming subsequently the total current 
I 0 to be constant, we obtain 8j(a, t)/Sr = O. 

The formulated problem for the current density is solved by the Fourier method. As 
a result 
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](r,t) I~ 2I~ ~ J'l(?nl)J~ e x p (  ?~zt ) 
= - - +  -- (1.4) 

~ ~= ~=1 %J~ (Y,O ~o ~a~ 

( J 0 ,  Jz a r e  t h e  B e s s e l  f u n c t i o n s  and Yn d e n o t e s  t h e  r o o t s  o f  t h e  e q u a t i o n  J I ( Y )  = 0 ) .  

For purposes of subsequent analytical calculation of the temperature and the mechanical 
stresses it is desirable to approximate (1.4) by means of some simple expression. For this 
we will use the variational equation [3] 

a 

,f (A] - -  ~#(lO]/Ot) 5]r dr = O, ( l .  5 ) 
0 

which is examined on a multiplicity of functions satisfying the condition 8j(#, t)/Sr = 0 
and limited as r ~ 0. We will specify the approximation 

aa--~ ql (t) i q~ (t) l (q2 (t) - -  r). ( 1 . 6 )  

The v a r i e d  f u n c t i o n s  ql  and q2 have  t h e  f o l l o w i n g  s e n s e :  q l ( t )  i s  t h e  v a l u e  o f  t h e  dimen-  
s i o n l e s s  c u r r e n t  d e n s i t y  a t  t h e  c e n t e r  o f  t h e  c o n d u c t o r  and q 2 ( t )  i s  t h e  c o o r d i n a t e  o f  t h e  

diffusion front. The requirement of constancy for the total current I 0 = 2n i]irdr associ- 
0 

ates ql with q2: q22 = 3~2/qi �9 

As a result of the substitution of (1.6) into (1.5), we obtain the following ordinary 
differential equation: 

dql + t 0  2 (1 7) 
dt 3~0~a2 ql = O. 

We will specify the initial condition for this equation so that the deviation norm 

i[/1(r,O)--f(r,O)]2rdr, where j(r, 0) has the form of (1.3), is at its minimum. For a solution 
0 

of (1.7) we will then have ql = (10t/(3p0P ~ + 0.737e2/a2) -I, but it will be valid only 
under the condition that q2(t) ~ a , i.e., so long as the front of the current-density propa- 
gation does not reach the outside radius. This will occur at the instant of time t, = 
0.1P0Poa2(l - 2.21e2/a2). When t e t, we will choose the approximation 

10  t,i ' & = - j  [ (q3 (t) - q~ (t)) as / + q~ 

for which we obtain 

(l.S) 

q 4 =  l _ e x p  ( i5(t--t,)) 
~0~(7a2 

qa ---- 3 - -  2q~. 

Formulas (1.4), (1.6), and (1.8) have been used to carry out the calculations for a = 
5 mm, e = 0.5 mm, p = i, o = 5"109 (~'m) -l (copper with T = 18 K). The results of these 
calculations can be seen in Fig. 1 (the solid lines represent the precise solution, whereas 
the dashed lines are approximations). 

2. Temperature Field. We assume that the wire conductor is surrounded by an infinitely 
isotropic uniform medium of low thermal conductivity. We will introduce the dimensionless 
radius p = r/aand the time x = tK1/(a2C1); K I and K 2 are the coefficients of thermal con- 
ductivity for the wire conductor and for the surrounding medium; C l and C 2 represent the 
heat capacities per unit volume for the wire conductor and the ambient medium. 
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The temperature field is described by the following system of equations: 

O2T~/Op 2 ~ (t/p)OT1/O p 4- b = OT/OT,  O< p < t; (2.1) 

~.~3~T~/Op ~ = ~120T~/O~, p > t ,  ( 2 . 2  ) 

where k 2 = ~2/K1 << 1; q2 = C2/C1; we have  i n t r o d u c e d  t h e  J o u l e  h e a t  l i b e r a t i o n  b = j 2 a 2 /  
(o<1) .  I n  t h e  n o t a t i o n  o f  ( 2 . 2 )  we have  made t h e  a s s u m p t i o n  t h a t  t h e  t e m p e r a t u r e  f i e l d  
T2(p ,  T) in  t h e  ambien t  medium has  t h e  form o f  a bounda ry  l a y e r  n e a r  p = 1, so t h a t  t h e  t e rm 
p-ZOT2/Sp can be d ropped .  

The i n i t i a l  c o n d i t i o n s  T I (  p, 0) = T2(P,  0) = 0 a r e  a s s o c i a t e d  w i t h  Eqs.  ( 2 . 1 )  and ( 2 . 2 ) ,  
as  w e l l  as  t h e  r e q u i r e m e n t s  o f  l i m i t a t i o n s  on t h e  s o l u t i o n  as  p ~ 0 and p + ~, as  w e l l  as  
t h e  c o n j u g a c y  c o n d i t i o n s  

T~(I, ~) = T2(I, ~) = 0(~), OT~(t,  ~)/0p = ~20T2(t, ~)/Op ---- Q(~). 

N e i t h e r  t h e  t e m p e r a t u r e  0 no r  t h e  d i m e n s i o n l e s s  h e a t  f low Q a r e  known. Howeve r ,  a p p l y i n g  

t h e  L a p l a c e  t r a n s f o r m  t o  Eq. ( 2 . 2 ) ,  f o r  t h e  r e p r e s e n t a t i o n  we o b t a i n  0 = -(1/X~v~p)Q (p i s  
t h e  L a p l a c e  t r a n s f o r m  p a r a m e t e r ) .  R e t u r n i n g  t o  t h e  o r i g i n a l s ,  we have  

t i Q (t) 
o 

(2.3) 

which is a boundary condition for T I. The subsequent calculation of the temperature is based 
on a solution of the integral equation for Q(~), which is derived as follows. Assuming that 
8TI(I , ~)/Bp = Q, we solve (2.1) by the method of eigenfunctions. Having substituted the 
found value of TI(I, ~) into (2.3), we arrive at 

o 

1 O (t) dt 
4- exp ( - -  %,~ (~ - -  t) Q (t) dt  + ~/~--7~_ 

t) 
�9 i ' ) ~ l  0 

= -- F(T), (2.4) 

where 

[; i ] F (~) = 2 b o (t) dt 4- 1 exp ( - -  ?~ (T - -  t)) bn (t) d t ;  
�9 -o ' ~ = 1  Jo 0',0 o 

1 1 

bo = ~ b (p, ~) ~ alp, b~ = ~ b (~, ,) ]~ (~p)  p ~p; 
o o 

as before, Yn represents the roots of the equation Jz(~) = O. 
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The presence of the small parameter ~ in Eq. (2.4) allows us to employ the asymptotic 
method. Looking for the solution in the form of Q(~) = ~QI(T) + ~2Q2(r ) + ..., we obtain 

y 01 (t) 
o ]/~(--~--~Y--t) d t = - - ~ l F ( ~ ) '  

; ) 02 (t) dt 
] / g  ('r - -  t) - -  - -  2~1 1 + exp  ( - -  ?~ (v - -  t)) Qz (t) dt  = - -  ~IF1 (x) 

0 ~I 

e t c .  We h a v e  c o m e  t o  t h e  A b e l  e q u a t i o n s ,  w h o s e  s o l u t i o n s  

etc. 

d f F (t) dt  
0 

When the evolution of heat is independent of time, we have 

0 

There is no difficulty in calculating Q2(T). 
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Having determined the heat flow Q, we can find the sought temperature field T l in the 
conductor. As has been shown by the calculations, the process of heat conduction proceeds 
considerably more rapidly than the process of current diffusion. The greatest temperature 
differences arise in the initial period, when the current has not yet left the central strand. 
With the eigenfunction method we can obtain an expression for the temperature for this case 

a ~ 4 (~p) J1 ('~) (I - ~p (- -~)) T l ( % ~ ) = 2 b J + 4 b  o~y ~ 2 
= %/0 (~) 

(b o = (t/2)(Io/(rce))2/(a• 
(2.5) 

3. Mechanical Stresses. The ponderomotive forces and the temperature differences lead 
to the appearance of mechanical stresses. Estimation of the frequencies of the elastic oscil- 
lations of the conductor in the case of axial symmetry showed that it is possible to limit 
ourselves to quasistatic calculations. The superposition principle valid for linear elasti- 
city makes it possible independently to examine the effect of the temperature and electromag- 
netic field. 

The system of equations from the theory of elasticity has the form [4] 

V . ~ +  K = 0 ,  ~ = V u~, ~ = ( I /E) [ ( t  + v ) T - - v l I ( ~ ) E ]  + ~ET,  

where T is the stress tensor; K is the vector of the volumetric forces; ~ is the strain ten- 
sor; u is the displacement vector; E is Young's modulus; ~ is the Poisson coefficient; It(z) 
is the first invariant of T; E is the unit tensor; ~ is the temperature coefficient of linear 
expansion. 

If we assume that the conductor is in a state of plane deformation, and if we take sym- 
metry into consideration, for the radial component we find 

. , Kr ~E T'~ 0 rat + 3rat +-f-c~+ (rK~)' + ~ t - - ~  

[ ( . . . ) '  = d / d r ] .  A s s u m i n g  t h e  s u r f a c e  r = a t o  b e  f r e e ,  we o b t a i n  

t t �9 r~Krdr-} - Kr t - -  dr + 
~ = 2 (1 - -  ~) r 2 ? 

0 r 

~E T/  - } -~r (rKr+-- i - -~-  ~'E T) d r - - ~ y r ( r K r +  t - - ,  ]dr" 
0 0 

The remaining components of the stress tensor are determined with the equalities 

% = (ro~)'+rK~, ~z = ~ ( ~ - ~ % ) - - u E T .  

For a conductor with D = i the only mechanical effect of the electromagnetic field is 
the Lorentz force [5]. In our case 

K r = _ ~ j ( r , O - ~ - y ] r d r ,  K ~ = K z : O .  
0 

The calculations of the stresses were conducted with a = i0 -s K -z, <i = 103 W/(m'K), E = 
1.23"i011N/m 2, o = 0.5"10 I~ (~'m) -l, I 0 = 5"10 a A. 

The results from the calculation of the temperature stresses and the stresses due to 
the ponderomotive forces, at various instants of time, are shown, respectively, in Figs. 
2 and 3. The resulting thermoelastic state of the conductor is not dangerous from the stand- 
point of strength. However, first of all, the parameters of the conductor have been chosen 
rather conditionally, and secondly, other criteria of operational capacity are possible (in 
the case of superconductors, for example, see [I]). 

In the idealized formulation examined above we did not take into consideration the rela- 
tionship between conductivity and other properties in their dependence on temperature. Con- 
sideration of this factor would have led to the associated nonlinear problem of current and 
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temperature distribution. However, the cited results pertain to that initial stage of the 
process in which the heating is still small. According to formula (2.5), the temperature 
difference across the cross section amounts approximately to 2 K; with an initial tempera- 
ture of 18 K the relationship between the properties and temperature in this case is not 
apparent [i]. 

1. 
2. 
3. 

4. 
5. 
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THE DYNAMICS OF AIR FLOW IN THE PRESENCE OF AN ENERGY PULSE 

IN THE SPHERICAL REGION, WITH PROVISION MADE 

FOR VIBRATIONAL-TRANSLATIONAL NONEQUILIBRIUM 

A. Kh. Mnatsakanyan, G. V. Naidis, and S. V. Rumyantsev UDC 533.9 

Numerous papers have been devoted to questions dealing with the dynamics of a gas in 
the presence of energy sources. We are thoroughly familiar with solutions to problems deal- 
ing with a powerful point explosion and with a spot explosion in which consideration is given 
to the counterpressure in an ideal gas with a constant adiabatic exponent for cases of plane, 
cylindrical, and spherical symmetry [i, 2]. Such explosions are similar to one another, 
if the variables are normalized to the corresponding parameters p~, p~ of the unperturbed 
gas, as well as to the characteristic dimensions and times of attenuation for the explosion 
wave, i.e., r 0 = (E0/p~) I/n, c 0 = r0(p~/p~) I/2 (E 0 is the energy released per unit area or 
length, or the total energy of the explosion, n = i, 2, 3 for plane, cylindrical, and sphe- 
rical symmetry). The solution from point explosion theory (PET) frequently provides a good 
relationship for the magnitudes of the jumps in the gasdynamic variables at the front of 
the shock wave (SW) at great distances from the center of the explosion (when r m R 0, R 0 
is the radius of the energy-release zone). However, in order to examine the distribution 
of the gasdynamic quantities over small periods of time, as well as to examine the finite 
distribution of temperature in the region of energy release after equalization of the pres- 
sure it is necessary to take into consideration the finiteness of the dimensions of the energy-i 
release region and the time over which the energy contribution is effective. 

The release of energy in a gas frequens comes about in nonequilibrium fashion. Thus, 
in a pulsed electric discharge in a molecular gas the greater portion of the released energy 
is stored in the vibrational degrees of molecular freedom, which leads to a significant di- 
vergence of the vibrational energy from equilibrium. In this case, in our analysis of the 
gasdynamic phenomena, we have to examine the kinetics of the exchange of energies between 
the internal and translational degrees of freedom for the molecules. The gasdynamics of 
nonequilibrium excited nitrogen was examined for instances of plane and cylindrical symmetry 
in [3, 4]. The duration of the excitation pulse was assumed, in this case, to be infinitely 
small. 

The gasdynamic phenomena in the nonequilibrium excitation of the spherical region in 
air is examined in this study for various ratios of the time T of the energy contribution 
and the characteristic gasdynamic and relaxation times. 
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